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Supplementary Material 

Mathematical model 

One-dimensional blood flow equations characterize flow rate Q , lumen area A  and blood 

pressure P  in the space-time domain through the following system of partial differential 

equations 
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where   and   are blood density and viscosity, respectively. Poiseuille velocity profile has 

been assumed in (2). The behavior of the arterial wall is described by the following 

constitutive equation1, 2 
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values at pressure 5 21 10 /oP dyn cm  , which is of the order of the diastolic pressure), h  is 

the arterial wall thickness, EE , CE  and MK  are effective moduli for the elastin, collagen and 

viscoelastic components, respectively. Finally, o  and r  model the fiber recruitment through 

the localization and width of the distribution of the fiber strain activation. At bifurcations we 

consider the following coupling conditions 
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with TN  the number of arterial segments arriving at the junction. Terminal arterial segments 

are modeled as Windkessel elements 
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where TP  is a reference terminal pressure, C  is the peripheral compliance and AR  and BR  

are resistive elements. 

Pertinent to the present study is the linear approximation of the pulse wave velocity (PWV) 

as given by the Moens-Korteweg equation 
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Numerical solution of the system of equations (1)-(2)-(3) with boundary conditions given by 

(6) is accomplished using the methodology described by Müller et al.3. In all cases, ten cardiac 

cycles are simulated to ensure that a periodic state is achieved. 

Arteriolar beds 

Arteriolar networks are generated by means of Constrained Constructive Optimization (CCO)4, 

5. The CCO technique generates a binary tree which can be set up by means of a given 

incoming flow rate and a given feeding vessel radius for a predefined perfusion volume. Figure 

1 shows the CCO-generated arterial network within a typical spherical region. Color indicates 

vessel radii (unitary radius is considered at the inlet). The algorithm is stopped when the 

network reaches a predefined number of arterial segments (8000 in the figure). In practice, 

the algorithm is stopped for a given number of terminal vessels reaches a given value.  

 

Figure S1: Arterial network automatically generated using CCO algorithm. A typical 

peripheral bed of spherical form containing 8000 arterial segments. 

 



 
3 

 

Arteriolar networks were constructed for two specific peripheral bed locations, namely the 

peripheral bed of the lenticulostriate artery and the peripheral bed of the posterior parietal 

branch of the middle cerebral artery. The data that characterizes these peripheral beds is 

reported in Table 1. 

Peripheral beds 

Feeding artery D  Q  V  n  of terminal 
vessels 

 t tD D  

Lenticulostriate artery 0.582 0.0548 3.95 2000 45.4 (5.8) 

Posterior parietal branch of 
middle cerebral artery 

1.039 0.1230 18.51 10000 
47.3 (6.5) 

Table 1: Characterization of peripheral beds. Diameter of feeding artery ( 2 oD R , in mm ), 

incoming flow rate (Q , in /ml s ), perfused volume (V , in ml ) and number of terminal vessels 

( n ) in the resulting CCO-generated network. Also, for the terminal vessels in the arteriolar 

network, the mean diameter ( tD , in m ) and the standard deviation ( tD , in m ) are 

reported. 

The system of equations (1)-(5) governs the blood flow in the arteriolar networks.  The setting 

of parameters follows that for arterial vessels except for the blood viscosity which is 

characterized by the following constitutive relation6 

 
 

 

2 2

*

0.45

1 1
1 1

1.1 1.11 0.45 1

C

D

C

H D D

D D
 

      
      

       

   (8) 

with  

0.645* 0.085 0.06

0.45 6 3.2 2.44D De e           (9) 

and 

 0.075

11 12 11 12

1 1
0.8 1

1 10 1 10

DC e
D D



 

 
     

  
   (10) 

where 2 oD R  is the vessel diameter and we have assumed that 0.5DH   is the value of the 

hematocrit. 

At all terminal locations of the arteriolar networks a resistive terminal element (see equation 

(6) with 0C  ) is considered. The value of these resistances is taken such that the flow rate 

is the same through each outlet and the pressure falls to the reference pressure TP . 

 

 



 
4 

 

Normotensive scenario 

The setting of the normotensive scenario follows the calibration criteria proposed by Blanco 

et al.1. Relevant model parameters to the present study are the following 

 
Nh : wall thickness of the arterial vessels 

 N

oR : lumen radius of the arterial vessels 

 N

WR : total resistance of the network 

 N

WC : total compliance of the network 

Hypertensive scenario 

To model the hypertensive condition we consider the following modification of the model 

parameters ( N  and H  denote normotensive and hypertensive cases) 

 1.5H Nh h : based on data previously reported7-10; 

 0.9H N

o oR R : based on data previously reported7-10;  

 1.6H N

W WR R : such that the mean arterial pressure is incremented approximately 50%, 

from the baseline healthy case, in central arteries; 

 0.77H N

W WC C : such that the peripheral compliance changes accordingly with the 

compliance of large vessels estimated through (7), that is the PWV results 
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For the arteriolar networks generated using CCO, the parameters were modified as detailed 

above. 

These alterations are introduced in all vessels of the network, and are in compliance with the 

observed structural changes in arterial vessels for hypertensive animals (rats). The vessel 

distensibility (governed by EE  and CE  in the equations above) was not modified. 
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